Abstract

In this paper, we describe the UV and cold tolerance of a purple violet pigment (PVP)-producing Antarctic bacterium, Janthinobacterium sp. Ant5-2 (PVP(+)) and compared its physiological adaptations with a pigmentless mutant strain (PVP(-)). A spontaneous deletion of vioA that codes for tryptophan monooxygenase, the first gene involved in the biosynthesis of PVP was found in PVP(-) strain. The PVP(-) culture exhibited significantly reduced survival during exponential and stationary growth phase following exposure to UVB (320 nm) and UVC (254 nm) (dose range: 0-300 J/m²) when compared to wild-type (PVP(+)) cultures. In addition, upon biochemical inhibition of pigment synthesis by 2(5H)-furanone, wild-type PVP(+) cultures exhibited approximately 50-fold growth reduction at a higher dose (300 J/m²) of UV. Increased resistance to UV was observed upon inducing starvation state in both PVP(+) and PVP(-) cultures. There was 80% (SD = ±8) reduction in extrapolymeric substance (EPS) production in the PVP(-) cultures along with a compromised survival to freeze-thaw cycles when compared to the PVP(+) cultures. Perhaps synthesis of PVP and EPS are among the key adaptive features that define the survival of this bacterium in Antarctic extreme conditions, especially during austral summer months.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call