Abstract

Oxygen scavengers are used to reduce the oxygen permeation of packaging (active barrier) and to absorb oxygen from its direct environment, e.g., a headspace of packaged food. Few oxygen scavenger coatings have been developed. Therefore, in this study, a novel oxygen scavenger coating has been developed. It is based on inorganic–organic polymers (ORMOCER®). The oxygen absorption reaction is activated by UV light. The scavenger was synthesized, coated on aluminum foil, subsequently dried and afterwards laminated with a polyethylene sealing layer. UV light activates the oxygen scavenging reaction. The oxygen absorption capacity, measured at 23 °C and 0% r.h., was 242 ± 8 mg oxygen/g scavenger coating. When the oxygen scavenger coating layer was laminated by using a two-component polyurethane laminating adhesive, the absorption capacity was hardly reduced, with a measured absorption capacity of 223 ± 18 mg oxygen/g scavenger coating. In an experimental packaging sample with the oxygen scavenger coating with a thickness (dry) of 3 µm and 18 µm, near-zero mbar oxygen partial pressure was reached by the non-laminated oxygen scavenger coatings within two days, and within about 20 days when laminated with a polyurethane laminating adhesive and a PE-layer on the oxygen scavenger layer. The oxygen partial pressure was kept near zero mbar for 500 days, whereas in the experimental packaging without oxygen scavenger, the oxygen partial pressure increased to 110 mbar during this time. The developed oxygen scavenger based on inorganic–organic polymers can be applied as wet chemical coating on various surfaces with standard application procedures. Application scenarios are oxygen-sensitive goods such as food, pharmaceutical products and cosmetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.