Abstract
Advanced oxidation processes are a desirable technology for treatment of contaminants of emerging concern. Nevertheless, conventional advanced oxidation of organophosphorus compounds releases inorganic phosphate, posing downstream concerns related to eutrophication. For this reason, we evaluated the ultraviolet light-activated calcium peroxide (UV/CaO2) system for effective treatment of organophosphorus compounds and concurrent capture of the mineralization products, phosphate. The degradation mechanisms, reaction kinetics, and mineralizations were assessed to determine the overall efficiency and performance of the UV/CaO2 process. Knowledge gaps related to photocatalysis in the UV/CaO2 system were not only addressed, but also leveraged to identify unique advantages for removal of organophosphorus compounds and their degradation products. Experimental results confirmed that the UV/CaO2 system effectively mineralized organophosphorus compounds and recovered inorganic phosphate; additionally, collaborative carbon fixation performance of the system reveals the potential of carbon utilization. These outcomes were facilitated by the alkaline environment generated by CaO2. The recovered solids contained most of the phosphorus and carbon from the parent compounds. Ultimately, these findings provide transformative, new insights into the development and application of advanced oxidation processes that prevent downstream concerns related to mineralization products, especially inorganic phosphorus and carbon.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.