Abstract

This paper presents a simple and cost-effective UV-ablation technique for fabrication of size-tunable nanofluidics devices via photochemical decomposition reaction. UV-irradiation through a PET photomask results in continuous decomposition of poly(carbonate) (PC), forming nanochannel and carboxyl groups on the surface of the etched PC. This photochemical decomposition process occurs at molecular scale, therefore, the depth of nanochannels can be controlled at nanometer level. The etching rate is estimated to be ca. 0.015nms−1. To demonstrate the potential application of the present UV-ablation technique, a nanochannel was fabricated and integrated with microchannels to form a micro/nanofluidics chip for protein concentration. Using this device, about 103–105 fold protein concentration can be achieved within 10min. The present approach offers a simple and practical solution to fabricate nanofluidics devices at low-cost, and the resulting device could provide ideal platforms for μTAS towards various applications in biology and chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.