Abstract

The damaging effects of UV-A irradiation on lens water-insoluble alpha-crystallin, plasma membranous and cytoskeletal proteins derived from bovine lenses were studied. Young and adult bovine lenses were kept viable for 2 months in organ culture. After 24 h of incubation they were irradiated, and analyses of the proteins by one-dimensional and two-dimensional gel electrophoresis followed by Western blotting were carried out at several time intervals. RNA isolation, PCR and Northern blotting were also performed. We identified age-related changes in water-insoluble alpha-crystallin, the major membrane protein MP26 and the cytoskeletal proteins vimentin, phakinin and actin between control and UV-irradiated lenses. It appeared that adult lenses are more susceptible to UV light than young lenses, and protein modification occurred more frequently in adult lenses. UV-A irradiation affects not only the cytoskeletal structure, as deduced by the abnormal arrangement of actin in the fiber cells, but also leads to degradation of actin mRNA. Furthermore, analysis of the expression of hsp25 and hsp70 revealed some alteration in the protein pattern of adult lenses. We suggest that degradation of the cytoskeletal proteins following irradiation is due to, at least in part, the decreased protective ability of heat shock proteins upon aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.