Abstract
ObjectivesWettability is increasingly considered to be an important factor determining biological responses to implant materials. In this context, the purpose of this study was to compare the dynamic wettability of dental implants made from different bulk materials and modified by different surface modifications, and to analyze the respective changes of wettability upon irradiating these implants by UV-A or UV-C light. MethodsFour original screw-type implants were investigated: One grit-blasted/acid-etched and one anodically oxidized titanium, one zirconia and one polyetheretherketone implant. Additionally, experimental, screwless, machined titanium cylinders were included in the study. Part of that cylinders and of blasted/etched implants were further modified by a magnetron-sputtered photocatalytic anatase thin film. Scanning electron microscopy was used to investigate the surface micro- and nanostructures. Samples were treated by UV-A (382nm, 25mWcm−2) and UV-C (260nm, 15mWcm−2) for entire 40min, respectively, and their wettability was quantified by dynamic contact angle (CA) analysis from multi-loop Wilhelmy experiments. ResultsAll implants are characterized by submicron- and nanosized surface features. Unexposed implants were hydrophobic (CA>90°). Upon UV-A, solely the implants with anatase coating became superhydrophilic (CA<5°). Upon UV-C, the blasted/etched implants turned superhydrophilic, the anodized titanium and the zirconia implants were considerably (CA=34° and 27°, respectively) and the PEEK implants slightly (CA=79°) hydrophilized. SignificanceThe wettability of implant surfaces can be improved by UV irradiation. The efficiency of UV-A and UV-C irradiation to lower the CA by photocatalysis or photolysis, however, is strongly dependent on the specific material and surface. Thus, attempts to photofunctionalize these surfaces by irradiation is expected to result in a different pattern of bioresponses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.