Abstract
MicroRNA-mediated gene therapy is emerging as a promising method for the treatment of ovarian cancer, but the development of miRNA mimic delivery vectors is still in its infancy, where the safety and efficacy of miR-34a-mimic remain unknown. Ultrasound-targeted microbubble destruction (UTMD) can be an effective and minimally invasive tool for the delivery of miR-34a-mimic in vitro and in vivo. Here, we describe a high-efficiency gene delivery strategy by using miR-34a-mimic loaded folate modified microbubbles (miR-34a-FM) with a portable ultrasonic irradiation system. Ultrasonic parameters, including acoustic intensity (AI), exposure time (ET) and duty cycle (DC), were optimized and the optimal acoustic condition (1.0 W/cm2, 20 s, and 15% DC) was used to deliver miRNA-34a into cells in vitro. MiR-34a mimic was successfully introduced into the cytoplasm and was found to inhibit proliferation and induce apoptosis of SK-OV-3 cells. Next, miR-34a-mimic was delivered to tumor tissue via UTMD, inhibiting tumor growth and prolonging the survival time of mice. In summary, UTMD-mediated miR-34a-mimic delivery has potential application in the clinical treatment of ovarian cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.