Abstract
The uncontrollable growth and uneven nucleation of lithium metal can be addressed by utilizing spatial confinement structures in conjunction with lithiophilic sites. However, their complex fabrication technique and the inhomogeneous dispersion of lithiophilic sites make the application ineffective. In this work, ultra-uniformly dispersed SiOx seeds and defects are produced in situ to achieve the spatially restricted protection within the reduced graphene oxide (rGO) layer. The in situ formed SiOx and defects during annealing double constrain lithium nucleation and growth behaviors thanks to the superlithiophilic characteristic, while both provide the fast Li+ transport channel to utilize the interlayer protection of rGO in limiting lithium dendrite growth. Furthermore, XANES and XPS analyze the SiOx seeds that are dominated by various valence states, and theoretical calculations further verify the control on the nucleation of lithium atoms. Benefiting from the optimum average valence of three for the "control site", the host realizes steady circulation. In asymmetric cells, the host demonstrates excellent coulombic efficiency of 99.1% and stable lifespans over 1250h at 1mAcm-2 . When assembled in LiFePO4 full cells, it retains a favorable capacity of 116.2mAhg-1 after 170 cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.