Abstract

Since thiosemicarbazide contains numerous nitrogen and sulfur atoms in its structural formula that enhance its strong coordinating abilities with metal ions, it is always selected as the mother molecule for the design of metal-ion sensors. In this report, a thiosemicarbazide derivative (4-naphthalenyl-3-thiosemicarbazide (NTSC)) was synthesized via a single step process and covalently conjugated onto the surfaces of carbon dots (CDs). The modified CDs demonstrated excellent monodispersity, good photostability, and tunable luminescence properties. More importantly, the CDs retained a highly specific Fe3+ recognition capacity in contrast to other competing metal ions. Fe3+ can efficiently quench the fluorescence of CDs even at fairly low concentration (30μM) with a detection limit as low as 1.68nM. The fluorescence quenching kinetics are likely to involve static quenching, which is caused by specific interactions between NTSC-CDs and Fe3+ toward the formation of a ground state complex. Due to their excellent optical performance, low toxicity, and good biocompatibility the NTSC-CDs may be applied to the imaging and monitoring of Fe3+ in bacillus subtilis. In effect we successfully fabricated an effective fluorescent nanosensor for both the quantitative detection of Fe3+ in aqueous solutions, and its real-time imaging in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.