Abstract

Soil nutrients are essential for plant growth, and it is crucial to accurately detect their levels. However, current methods for detecting soil nutrients still have low accuracy and high costs. In this study, we propose a multi-source fusion feature approach that combines multispectral image technology with electronic nose gas response technology to achieve rapid, high-precision, and cost-effective detection of soil nutrients, including soil organic matter (SOM), total nitrogen (TN), available potassium (AK), and available phosphorus (AP). To begin, a multispectral camera was used to collect spectral images and extract seven index features. Additionally, an electronic nose was used to collect soil pyrolysis gases to obtain the response curve and extract seven response features. These two sets of features were effectively fused to form a 106 × 98 fusion feature space. Secondly, principal component analysis (PCA) and Pearson correlation coefficient (PCC) algorithms were used to optimize and reduce the dimensionality of the fused feature space. Finally, a predictive model of the relationship between the feature space and the nutrient content of the soil samples was established using the random forest (RF) and partial least squares regression (PLSR) algorithms. The predictive performance of the model was used to evaluate the accuracy of soil nutrient detection. The results showed that the PLSR modeling of the optimized feature space of PCA achieved high accuracy in predicting the levels of main soil nutrients, with R2 values for SOM, TN, AK, and AP of 0.96, 0.95, 0.84, and 0.73, and the RMSE values of 0.56, 0.07, 3.21, and 3.70, respectively. Compared to using only electronic nose gas response technology, the soil nutrient detection with multi-source data features method in this study not only improved the accuracy for SOM and TN but also for metal elements AK and AP in soil. The spectral index features proposed in this study were able to compensate for the limitations of the electronic nose response features, and modeling with the fusion feature space resulted in an accurate prediction of SOM, TN, AK, and AP levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.