Abstract

Developing low-cost electrocatalysts with excellent activity is significant for accelerating the slow oxygen evolution reaction (OER). In this work, an effective electrocatalyst is prepared via the cross-linked effect and reconstruction strategy based on inexpensive transition metals (Fe, Co, and Ni) and phytic acid (PA). The feasibility of utilizing the cross-linked effect and reconstruction strategy is due to that PA molecules with strongly electronegative phosphoric acid groups possess a great deal of complexing sites, which can facilitate the formation of large cross-linked network by randomly complexing Fe, Co and Ni ions. And the carboatomic rings in PA molecules will reconstructed as carbon-matrix when PA molecules decompose. The above structural evolution of large cross-linked network and reconstructing process is rigorously analyzed through the characterization methods such as XPS. These analysis results indicate that FeCoNi-PA-300 possesses a high degree of amorphization, an abundant nanoporous structure, and a small nanoparticle size, resulting in a large electrochemically active area. Consequently, FeCoNi-PA-300 just needs low overpotentials of about 271 mV and 286 mV to obtain the current densities of 50 and 100 mA cm−2, respectively. Meaningfully, this synthetic method is a general strategy to meliorate the OER activity and electrical conductivity of other catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call