Abstract

A biomimetic system for enhancing the control and reliability of grasping with prosthetic hands was designed and experimentally evaluated. Barometric pressure sensors as well as a force-sensitive resistor (FSR) were placed on a prosthetic hand to provide valuable tactile feedback. Contact and slip detection grip control algorithms were developed to interpret force signals for enhancing stable grasping. Recent advances in radio-frequency identification (RFID) technology enable the amputee to select between grip control strategies based on the desired object to be grasped. Experimental results indicate that the control algorithms are capable of utilizing real-time force responses to detect object contact as well as slip. By allowing the user to act as a high-level controller with RFID technology, a multi-faceted low-level controller that responds to tactile feedback can be developed for enhancing grasping functionality in prosthetic hands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call