Abstract
ObjectiveAutomatic monitoring of Adverse Drug Reactions (ADRs), defined as adverse patient outcomes caused by medications, is a challenging research problem that is currently receiving significant attention from the medical informatics community. In recent years, user-posted data on social media, primarily due to its sheer volume, has become a useful resource for ADR monitoring. Research using social media data has progressed using various data sources and techniques, making it difficult to compare distinct systems and their performances. In this paper, we perform a methodical review to characterize the different approaches to ADR detection/extraction from social media, and their applicability to pharmacovigilance. In addition, we present a potential systematic pathway to ADR monitoring from social media. MethodsWe identified studies describing approaches for ADR detection from social media from the Medline, Embase, Scopus and Web of Science databases, and the Google Scholar search engine. Studies that met our inclusion criteria were those that attempted to extract ADR information posted by users on any publicly available social media platform. We categorized the studies according to different characteristics such as primary ADR detection approach, size of corpus, data source(s), availability, and evaluation criteria. ResultsTwenty-two studies met our inclusion criteria, with fifteen (68%) published within the last two years. However, publicly available annotated data is still scarce, and we found only six studies that made the annotations used publicly available, making system performance comparisons difficult. In terms of algorithms, supervised classification techniques to detect posts containing ADR mentions, and lexicon-based approaches for extraction of ADR mentions from texts have been the most popular. ConclusionOur review suggests that interest in the utilization of the vast amounts of available social media data for ADR monitoring is increasing. In terms of sources, both health-related and general social media data have been used for ADR detection—while health-related sources tend to contain higher proportions of relevant data, the volume of data from general social media websites is significantly higher. There is still very limited amount of annotated data publicly available , and, as indicated by the promising results obtained by recent supervised learning approaches, there is a strong need to make such data available to the research community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.