Abstract

Privacy policies analysis relies on understanding sentences meaning in order to identify sentences of interest to privacy related applications. In this paper, the authors investigate the strengths and limitations of sentence embeddings to detect dangerous permissions in Android apps privacy policies. Sent2Vec sentence embedding model was utilized and trained on 130,000 Android apps privacy policies. The terminology extracted by the sentence embedding model was then compared with the gold standard on a dataset of 564 privacy policies. This work seeks to provide answers to researchers and developers interested in extracting privacy related information from privacy policies using sentence embedding models. In addition, it may help regulators interested in deploying sentence embedding models to check for privacy policies' compliance with the government regulations and to identify points of inconsistencies or violations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.