Abstract

Relationships between geometric structures of active metallic sites and areal rates of reaction (structure sensitivity) are extensively studied for supported metal catalysts. For CO oxidation on irreducible oxide-supported Pt catalysts, there still exists a discrepancy regarding structure sensitivity. Theoretical and single-crystal analyses suggest the CO oxidation reaction rate should be highly structure sensitive, whereas measurements on supported Pt catalysts show only minimal structure sensitivity. Here, we used quantitative in situ diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) to investigate the influence of CO oxidation reaction conditions on the fraction of well-coordinated (WC) and under-coordinated (UC) Pt active sites on a series of four α-Al2O3-supported Pt catalysts with average Pt sizes ranging from ∼1.4 to 19 nm. Pt nanoparticle surfaces were observed to restructure under CO oxidation reaction conditions, increasing the fraction of UC Pt sites. Reconstruction rendered ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call