Abstract
This work used high-temperature calcination techniques along with basic chemical processing to produce a range of porous carbon compounds from biomass. After that, these substances were employed as anodes in lithium-ion batteries. The first hard carbon was produced via the dehydration reaction of strong sulfuric acid with sucrose (R-HC), then annealing in an NH3Ar environment was used to obtain the nitrogen-doped porous hard carbon (N-HC). Because N-HC has a high interlayer spacing (ca. 0.39 nm) and an abundant ultra-microporous structure (pore size < 0.75 nm), the lithium-ion diffusion coefficient in N-HC can reach up to 9.0 × 10−8 cm2.s−1. The obtained porous carbon compounds contain a rich pore structure, many functional groups, and a high specific surface area, according to the results. Following their application to the anode of lithium-ion batteries, they demonstrate favorable cycle stability and electrochemical performance. Furthermore, a detailed investigation into the kinetic characteristics of the lithium-ion diffusion behavior in the electrodes revealed that the porous carbon materials’ electrodes exhibited greater surface diffusion behavior for Li+.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.