Abstract

Photodetection based on bis-(4-dimethylaminodithiobenzil)-Ni(II) (BDN), a representative and well-studied metal dithiolene that shows strong absorption in the near-infrared region of the electromagnetic spectrum, has been investigated. By adopting a metal/insulator/semiconductor/metal (MISM) structure, the peak photocurrent response to an oscillating light chain is increased by up to 50 times, compared to devices without an insulating layer. The transient form of the MISM photoresponse, while unsuitable for steady-state photodetection, can be used to detect periodic light signals of frequencies up to 1 MHz, and is thus applicable for optical communication. Further improvements have been realized by nanostructuring carbon black into the dithiolene layer, improving charge collection, and yielding detectivity of up to 1.6 × 10(11) Jones at wavelengths beyond the scope of silicon photodiodes. Such an architecture may allow the favorable absorption properties of other such metal dithiolenes to be harnessed, where their low charge carrier mobilities and short excitation lifetimes have previously limited their applicability to this field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.