Abstract

BackgroundMicrobial ecologists often employ methods from classical community ecology to analyze microbial community diversity. However, these methods have limitations because microbial communities differ from macro-organismal communities in key ways. This study sought to quantify microbial diversity using methods that are better suited for data spanning multiple domains of life and dimensions of diversity. Diversity profiles are one novel, promising way to analyze microbial datasets. Diversity profiles encompass many other indices, provide effective numbers of diversity (mathematical generalizations of previous indices that better convey the magnitude of differences in diversity), and can incorporate taxa similarity information. To explore whether these profiles change interpretations of microbial datasets, diversity profiles were calculated for four microbial datasets from different environments spanning all domains of life as well as viruses. Both similarity-based profiles that incorporated phylogenetic relatedness and naïve (not similarity-based) profiles were calculated. Simulated datasets were used to examine the robustness of diversity profiles to varying phylogenetic topology and community composition.ResultsDiversity profiles provided insights into microbial datasets that were not detectable with classical univariate diversity metrics. For all datasets analyzed, there were key distinctions between calculations that incorporated phylogenetic diversity as a measure of taxa similarity and naïve calculations. The profiles also provided information about the effects of rare species on diversity calculations. Additionally, diversity profiles were used to examine thousands of simulated microbial communities, showing that similarity-based and naïve diversity profiles only agreed approximately 50% of the time in their classification of which sample was most diverse. This is a strong argument for incorporating similarity information and calculating diversity with a range of emphases on rare and abundant species when quantifying microbial community diversity.ConclusionsFor many datasets, diversity profiles provided a different view of microbial community diversity compared to analyses that did not take into account taxa similarity information, effective diversity, or multiple diversity metrics. These findings are a valuable contribution to data analysis methodology in microbial ecology.

Highlights

  • Microbial ecologists often employ methods from classical community ecology to analyze microbial community diversity

  • Given the potential limitations of applying traditional diversity indices to microbial datasets produced by high-throughput sequencing, we sought to evaluate microbial diversity using methods that might be better suited for microbial taxa that span multiple domains of life and multiple dimensions of diversity

  • Naïve microbial diversity comparisons may vary with the sensitivity parameter, q Diversity profiles calculated from the experimental and observational datasets provided insights into microbial community diversity that would not be perceivable through the use of a classical univariate diversity metric

Read more

Summary

Introduction

Microbial ecologists often employ methods from classical community ecology to analyze microbial community diversity. Diversity profiles encompass many other indices, provide effective numbers of diversity (mathematical generalizations of previous indices that better convey the magnitude of differences in diversity), and can incorporate taxa similarity information To explore whether these profiles change interpretations of microbial datasets, diversity profiles were calculated for four microbial datasets from different environments spanning all domains of life as well as viruses. Given the newness of these data types and the fact that the aims and goals of microbial studies are usually similar to those of macro-ecology, microbial ecologists often use methods from classical community ecology to analyze their data. These include Shannon’s H [4], Berger-Parker Evenness [5], rarefaction, and ordination [6]. The taxonomic/phylogenetic and functional genes of environmental microbes are commonly sequenced, but it is still very difficult to link the taxonomy of an individual microbe to the environmental functions it carries out

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call