Abstract

Neutron capture therapy (NCT) is a radiotherapeutic technique that is designed to utilize the neutron capture reaction and damage the tumor cells through the energy release from the reaction. Nuclear reactors are typically utilized in this therapy because of the high neutron fluence rate that can be achieved. There has been minimal work to evaluate the effectiveness of neutron generators in NCT. This work presents the preliminary simulation results of utilizing of a deuterium-deuterium generator in boron neutron capture therapy. MCNP 6.1 was used to model the detailed geometry of the neutron generator and the phantom. Neutron moderators and photon shielding were used to optimize the neutron fluence rate in the tumor and decrease the photon dose in the phantom respectively. The study showed that a good localization of the neutron dose can be achieved in the tumor area with a reduction of the photon dose in the surrounding areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.