Abstract

The cAnt-Miner algorithm is an Ant Colony Optimization (ACO) based technique for classification rule discovery in problem domains which include continuous attributes. In this paper, we propose several extensions to cAnt-Miner. The main extension is based on the use of multiple pheromone types, one for each class value to be predicted. In the proposed μcAnt-Miner algorithm, an ant first selects a class value to be the consequent of a rule and the terms in the antecedent are selected based on the pheromone levels of the selected class value; pheromone update occurs on the corresponding pheromone type of the class value. The pre-selection of a class value also allows the use of more precise measures for the heuristic function and the dynamic discretization of continuous attributes, and further allows for the use of a rule quality measure that directly takes into account the confidence of the rule. Experimental results on 20 benchmark datasets show that our proposed extension improves classification accuracy to a statistically significant extent compared to cAnt-Miner, and has classification accuracy similar to the well-known Ripper and PART rule induction algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.