Abstract

AbstractElectric vehicles encounter significant challenges in colder climates due to reduced battery efficiency at low temperatures and increased electricity demand for cabin heating, which impacts vehicle propulsion. This study aims to address these challenges by implementing a thermal management system utilizing Phase Change Materials (PCMs) and validating the performance of a Multilayer Perceptron (MLP) model in predicting PCMs behavior and battery temperature distributions. The study employs an MLP model trained with 160 samples of diverse heat inputs, including pulsating, constant, wiener, discharging, and random temperatures. The model uses these temperatures as inputs and liquid fractions as target values. Performance evaluation is conducted using the MATLAB platform and is benchmarked against existing approaches, such as Long Short‐term Memory (LSTM), spatiotemporal convolutional neural network (CNN), and pooled CNN‐LSTM. The MLP model's accuracy in predicting PCMs phase transitions is validated by comparing predicted liquid fractions with numerically obtained values. Additionally, this study forecasts temperature distributions within a standard battery pack under various discharge scenarios, considering the performance of commercial lithium‐ion batteries. The proposed MLP model demonstrates high efficacy, achieving a correlation of up to 0.999 and root mean squared error below 0.013 compared with numerical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.