Abstract
This research explored the potential of marble wastewater (MWW) in cement paste and mortar production, addressing water scarcity, sustainable growth, and resource management. It investigated the physico-mechanical properties and microstructure of cement materials incorporated with varying amounts of MWW. In this study, we utilized tap water and MWW for mortar quality testing, focusing on parameters including setting times, water absorption, and mechanical strength. The viability of MWW in concrete formulations was confirmed by its acceptable total dissolved solids and alkalinity levels. A comprehensive experimental program determined that using marble wastewater in place of tap water reduced the quantity of water required for cement consistency and generated slightly higher compressive strengths (2, 3, 4, and 6%) after 28 days of curing. Analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray analysis, and X-ray diffraction (XRD), were employed for molecular and microstructural analyses, which revealed that MWW had a significant influence on portlandite development and CSH formation at higher replacement levels. In short, this research highlights the feasibility of using MWW in cement products, contributing to sustainable water resources, and industrial waste management and utilization.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.