Abstract

BackgroundLactic acid bacteria (LAB) are extensively researched for their potential to prevent and control Listeria monocytogenes (Lm) in meat products due to their natural and harmless nature, particularly in bacteriocin production. However, LAB and their metabolites encounter remarkable challenges in achieving the desired bacterial inhibition due to the complexity of the meat matrix and the stress response mechanisms of Lm. Scope and approachThis review summarises the principal measures through which LAB and their metabolites control Lm in both fermented and non-fermented meat products and highlights the potential limitations of these applications. The potential challenges of bacteriocinogenic strains in controlling Lm in meat were specifically addressed based on the characteristics of the meat matrix environment and the resistance mechanisms of Lm. Key findings and conclusionsLAB that establish a dominant ecological niche in meat products have excellent anti-Listeria properties, especially using bacteriocinogenic strains. However, many bioprotectors have achieved only limited success due to limitations in the production and diffusion of bacteriocins in meat substrates, natural or induced bacteriocin resistance in Lm. The development of synergistic bacterial inhibition strategies shows promise in counteracting the challenges posed by the meat matrix, enhancing bacterial control, and reducing stress resistance. Future research should aim to elucidate the stress regulatory network of Lm in environments influenced by LAB and further resistance and virulence studies on residual Lm in meat should be conducted to ensure the safe application of bioprotection strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.