Abstract

The monitoring of marine ecosystems is crucial due to the growing threat posed by nuclear power plants and other nuclear anthropogenic emissions. In our work, we used a straightforward and low-cost biomonitoring technique called fluctuation asymmetry (FA) to examine the variation between the left and right sides (developmental instability) of organisms’ traits that were influenced by genetic and environmental variables in the early stages of ontogenesis. The specimens of fish (Leiognathus sp.) and crabs (Portunus sanguinolentus) were collected seasonally and used as bioindicators to determine the effects of Uranium-238 (U-238) radioactivity around a nuclear power plant. The obtained results revealed that FA values were not considered typical values (FA = 0) in all seasons. Moreover, FA values of Leiognathus sp. exhibited insignificant fluctuation for a particular characteristic through the different seasons, while a significant fluctuation occurred amongst the characteristics themselves throughout the same season. Inversely, FA values of the four characteristics in Portunus sanguinolentus displayed seasonal variation amongst them all. Statistically, there was a strong positive correlation (r = 0.5, p < 0.05) between U-238 radioactivity in the flesh of both organisms and the fluctuation asymmetry of different traits but it is not a sign that any radioactive pollution exists.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call