Abstract

An ultra-wideband (UWB) positioning system consists of at least three anchors and a tag for the positioning procedure. Via the UWB transceivers mounted on all devices in the system, we can obtain the distance information between each pair of devices and further realize the tag localization. However, the uncertain measurement in the real world may introduce incorrect measurement information, e.g., time, distance, positioning, and so on. Therefore, we intend to incorporate the technique of ensemble learning with UWB positioning to improve its performance. In this paper, we present two methods. The experimental results show that our ideas can be applied to different scenarios and work well. Of note, compared with the existing research in the literature, our first algorithm was more accurate and stable. Further, our second algorithm possessed even better performance than the first. Moreover, we also provide a comprehensive discussion for an ill-advised point, which is often used to evaluate the positioning efficiency in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.