Abstract

Film-based fluorescence sensors have been demonstrated to be powerful tools for real-time detection of trace chemical vapors. While explosive vapor detection via fluorescence quenching has been widely explored, fluorescence-based real-time detection and identification of illicit drug vapors remains a challenge. Here, we report two perylene diimide-based sensing materials, P1 and P2, incorporating 2,2-dihexyloctanyl chains and 4-[tris(4-{tert-butyl}phenyl)methyl]phenyl moieties at the imide positions, respectively. Quartz crystal microbalance with in situ photoluminescence measurements showed that N-methylphenethylamine, a simulant of methamphetamine (MA), diffused into films of P1 and P2 via Fickian and case-II mechanisms, respectively. The difference in the analyte diffusion mechanism led to P2 showing significantly faster luminescence quenching but slower luminescence recovery compared to P1. Finally, the different diffusion mechanisms were used as the basis for developing a simple sensor array based on P1 and P2 that could selectively detect free-base illicit drugs (MA, cocaine, and tetrahydrocannabinol) from potential interferants (organic amines, alcohol, and cosmetics) within 40 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call