Abstract

The friction occurring between the teeth of gears is a significant contributor to energy loss in gear drives. Factors like the load, speed, and coefficient of friction (µ) play a crucial role in determining the extent of frictional losses in gears. The coefficient of friction (µ) is a complex function influenced by various tribological parameters, including rolling, and sliding velocities, normal load at the tooth contact zone, oil temperature, and contact surface roughness. To analyze the impact of design and operating parameters on the coefficient of friction, a comprehensive statistical parametric approach was employed, combining numerical and statistical methods. The study employed a design of experiments methodology to numerically examine the impact of various tribological factors on the coefficient of friction. This methodology facilitated the identification of primary effects and crucial factors that have a significant impact on the variable µ. The findings derived from the computational models were subsequently compared with the discoveries of pre-existing investigations that includes both experimental and theoretical approaches. The proposed method represents a powerful tool for understanding the relationship and correlation between major tribological factors and the coefficient of friction. By employing this approach, it becomes possible to identify optimized tribological parameters. This information is valuable in improving the design and operation of gear systems, with the aim of reducing energy loss due to friction and enhancing overall efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call