Abstract

Four methods for compression ratio estimation based on cylinder pressure traces are developed and evaluated for simulated and experimental cycles. Three methods rely upon a model of polytropic compression for the cylinder pressure. It is shown that they give good estimates with a small bias at low compression ratios. A variable projection algorithm with a logarithmic norm of the cylinder pressure yields the smallest confidence intervals and shortest computational time for these three methods. This method is recommended when computational time is an important issue. The polytropic pressure model lacks information about heat transfer and therefore the estimation bias increases with compression ratio. The fourth method includes heat transfer, crevice effects, and a commonly used heat release model for firing cycles. This method estimates the compression ratio more accurately in terms of bias and variance. The method is more computationally demanding and thus recommended when estimation accuracy is the most important property. In order to estimate the compression ratio as accurately as possible, motored cycles with high initial pressure should be used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.