Abstract

We have examined the significant enhancement of ambipolar charge injection and transport properties of bottom-contact single crystal field-effect transistors (SC-FETs) based on a new rubrene derivative, bis(trifluoromethyl)-dimethyl-rubrene (fm-rubrene), by employing carbon nanotube (CNT) electrodes. The fundamental challenge associated with fm-rubrene crystals is their deep-lying HOMO and LUMO energy levels, resulting in inefficient hole injection and suboptimal electron injection from conventional Au electrodes due to large Schottky barriers. Applying thin layers of CNT network at the charge injection interface of fm-rubrene crystals substantially reduces the contact resistance for both holes and electrons; consequently, benchmark ambipolar mobilities have been achieved, reaching 4.8 cm(2) V(-1) s(-1) for hole transport and 4.2 cm(2) V(-1) s(-1) for electron transport. We find that such improved injection efficiency in fm-rubrene is beneficial for ultimately unveiling its intrinsic charge transport properties so as to exceed those of its parent molecule, rubrene, in the current device architecture. Our studies suggest that CNT electrodes may provide a universal approach to ameliorate the charge injection obstacles in organic electronic devices regardless of charge carrier type, likely due to the electric field enhancement along the nanotube located at the crystal/electrode interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.