Abstract

The synthesis and crystal structure of a new uranyl coordination polymer featuring 3-bromo-5-iodobenzoic acid is described and the luminescent and vibrational properties of the material have been explored. Compound (1), [UO2(C7H3BrIO2)2]n, features dimeric uranyl units chelated and then linked by 3-bromo-5-iodobenzoic acid ligands to form a one-dimensional coordination polymer that is subsequently assembled via bifurcated halogen-bonding interactions with uranyl oxo atoms to form a supramolecular three-dimensional network. The asymmetric, bifurcated halogen-bonding interaction in (1) is notable as it represents the first observation of this synthon in a uranyl hybrid material. Raman and IR spectroscopy showed that halogen-bonding interactions with the uranyl oxo atoms result in small shifts in υ1 and υ3 frequencies, whereas luminescence spectra collected at an excitation wavelength of 420 nm reveal partially resolved uranyl emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.