Abstract

As part of a viral mitigating strategy for continuous bioprocessing, that utilizes a plug flow reactor (PFR) for continuous viral inactivation (CVI), understanding the minimum residence time as a function of reactor scale and operational conditions is critical. An empirical-based model was utilized to calculate the minimum duration a virus particle experiences within a plug flow reactor as a function of reactor design and operational conditions. This empirical model's calculations were challenged by pulse injecting the bacteriophage ΦX-174 in non-inactivating conditions and monitoring the discharge of the PFR with infectivity assays. The initial proposed empirical model, with the constraint of requiring an operational Dean number of>100, proved to be effective at calculating first breakthrough of ΦX-174 but only for the appropriate Dean number conditions. With the knowledge gained from the first empirical model, a second was generated to eliminate the Dean number constraint. This second modified empirical model proved to be successful at calculating the first breakthrough at all Dean number's tested, however CVI operation at the lower Dean's number will lead to an increased asymmetry (i.e., increased tailing) in the residence time distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call