Abstract

An advanced time integrated method has been developed for soft X-ray pulsed laser beam characterization. A technique based on poly (methyl methacrylate) - PMMA laser induced ablation has been used for beam investigations of soft X-ray laser sources like FLASH (Free-electron LASer in Hamburg; formerly known as VUV FEL and/or TTF2 FEL) and plasma-based Ne-like Zn laser performed at PALS (Prague Asterix Laser System). For the interaction experiments reported here, the FLASH system provided ultra-short pulses (~10-fs) of 21.7-nm radiation. The PMMA ablation was also induced by plasma-based Ne-like Zn soft X-ray laser pumped by NIR beams at the PALS facility. This quasi-steady-state (QSS) soft X-ray laser provides 100-ps pulses of 21.2-nm radiation, i.e. at a wavelength very close to that of FLASH but with about 5,000 times longer pulses. In both cases, the PMMA samples were irradiated by a single shot with a focused beam under normal incidence conditions. Characteristics of ablated craters obtained with AFM (Atomic Force Microscope) and Nomarski microscopes were utilized for profile reconstruction and diameter determination of the focused laser beams ablating the PMMA surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.