Abstract
BackgroundThe endogenous adenosine deaminases acting on RNA (ADAR) have been harnessed to facilitate precise adenosine-to-inosine editing on RNAs. However, the practicability of this approach for therapeutic purposes is still ambiguous due to the variable expression of intrinsic ADAR across various tissues and species, as well as the absence of all-encompassing confirmation for delivery methods.ResultsIn this study, we demonstrate that AAV-mediated delivery of circular ADAR-recruiting RNAs (arRNAs) achieves effective RNA editing in non-human primates at dosages suitable for therapy. Within a time frame of 4 to 13 weeks following infection, the editing efficiency in AAV-infected cells can reach approximately 80%, with no discernible toxicity, even at elevated dosages. In addition, when AAV-delivered circular arRNAs are systematically administered to a humanized mouse model of Hurler syndrome, it rectifies the premature stop codon precisely and restores the functionality of IDUA enzyme encoded by the Hurler causative gene in multiple organs.ConclusionsThese discoveries considerably bolster the prospects of employing AAV-borne circular arRNAs for therapeutic applications and exploratory translational research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.