Abstract

AbstractThe practical applications of non‐aqueous lithium‐oxygen batteries are impeded by large overpotentials and unsatisfactory cycling durability. Reported here is that commonly encountered fatal problems can be efficiently solved by using a carbon‐ and binder‐free electrode of titanium coated with TiO2 nanotube arrays (TNAs) and gold nanoparticles (AuNPs). Ultraviolet irradiation of the TNAs generates positively charged holes, which efficiently decompose Li2O2 and Li2CO3 during recharging, thereby reducing the overpotential to one that is near the equilibrium potential for Li2O2 formation. The AuNPs promote Li2O2 formation, resulting in a large discharge capacity. The electrode exhibits excellent stability with about 100 % coulombic efficiency during continuous cycling of up to 200 cycles, which is due to the carbon‐ and binder‐free composition. This work reveals a new strategy towards the development of highly efficient oxygen electrode materials for lithium‐oxygen batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.