Abstract

The application of synthetic biology tools to modulate gene expression to increase yield has been thoroughly demonstrated as an effective and convenient approach in industrial production. In this study, we employed a high-throughput screening strategy to identify a 5' UTR sequence from the genome of B. subtilis 168. This sequence resulted in a 5.8-fold increase in the expression level of EGFP. By utilizing the 5' UTR sequence to overexpress individual genes within the rib operon, it was determined that the genes ribD and ribAB serve as rate-limiting enzymes in the riboflavin synthesis pathway. Constructing a 5' UTR library to regulate EGFP expression resulted in a variation range in gene expression levels exceeding 100-fold. Employing the same 5' UTR library to regulate the expression of EGFP and mCherry within the operon led to a change in the expression ratio of these two genes by over 10,000-fold. So, employing a 5' UTR library to modulate the expression of the rib operon gene and construct a synthetic rib operon resulted in a 2.09-fold increase in riboflavin production. These results indicate that the 5' UTR sequence identified and characterized in this study can serve as a versatile synthetic biology toolkit for achieving complex metabolic network reconstruction. This toolkit can facilitate the fine-tuning of gene expression to produce target products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.