Abstract

Renewable surplus power is increasing due to the increasing penetration of these intermittent resources. In practice, electric grid operators either curtail the surplus energy resulting from renewable-based generations or utilize energy storage resources to absorb it. In this paper, we propose a framework for utilizing water pumps and tanks in water supply networks to absorb the surplus electrical energy resulting from renewable-based electricity generation resources in the electrical grid. We model water supply networks analytically, and propose a two-step procedure that utilizes the water tanks in the water supply network to harvest the surplus energy from an electrical grid. In each step, the water network operator needs to solve an optimization problem that is nonconvex. To compute optimal pump schedules and water flows, we develop a second-order cone relaxation and an approximation technique that enable us to transform the proposed problems into mixed-integer second-order cone programs. We then provide the conditions under which the proposed relaxation is exact, and present an algorithm for constructing an exact solution to the original problem from a solution to the relaxed problem. We demonstrate the effectiveness of the proposed framework via numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.