Abstract

Generally, the cool box is produced using styrofoam as the main thermal insulation material. However, the use of styrofoam potentially cause pollution to the environment at the end of its useful life because it cannot decompose naturally. The effort to overcome this problem is by producing thermal insulation materials from natural sources such as water hyacinth and corncob. The purpose of this study was to determine the characteristics of biocomposite board made from combination of water hyacinth powder and corncob ash based on physical, mechanical, and thermal conductivity analysis. Biocomposite boards were produced by introducing combination of water hyacinth powder and corncorb ash (5, 10, 15%wt) into epoxy resin. The ratio of water hyacinth powder and corncob ash were 100:0 (P0), 95:5 (P1), 90:10 (P2), 85:15 (P3). The biocomposite boards were also made from water hyacinth powder and corncob powder, which ratio of 15:85 (P4) and 0:100 (P5). The results of this research revealed that type P5 board had the lowest density value (0.927 g / cm3) and the lowest water absorption value (1.53%). The P2 type board shows the highest bending strength (8.6 N/mm2) which met the requirements of JIS A 5908 for particleboards type 8. The highest value of compressive strength was observed at P5 type board which was 2.94 ± 0.53 N / mm2. The lowest thermal conductivity values were observed at P2 type boards (0.305 W / mK). It can be concluded that, P2 type board had the best thermal insulator properties among other boards in this study. The thermal insulation effectiveness assessment of biocomposite board for cool box application was conducted using P2 and P5 type boards. The assessment results demonstrated that the styrofoam cool box and commercial cool box performance for maintaining temperature were superior compared to biocomposite cool box. Therefore, it is necessary to re-examine the biocomposite cool box, especially in terms of panel assembling and the shape of the lid, to produce biocomposite cool box with thermal insulator properties comparable to the commercial cool box.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call