Abstract

The Portland cement (PC) industry is a big producer of CO2 – a major contributor to the global warming. As the world tends to reduce the CO2 emissions because of its negative effect, a sustainable and efficient PC alternative is needed to be found. One of the most promising substitute is based on reactive magnesia – magnesium oxychloride cement (MOC). This paper deals with the design, development, and characterization of environmentally friendly composites based on MOC. In addition to the standard quartz sand filler, carbon spheres-based waste produced by polypropylene treatment via plasma gasification was used as a nanoadditive. Before the preparation of the composites themselves, the carbon spheres (CS) were analysed with a wide range of analytical methods in order to determine their microstructure and composition. The CS were used in the amount of 0.5, 1.0, and 3.0 wt% related to the weight of the pure MOC paste. The prepared composite samples were tested for their microstructure, phase and chemical composition, micro- and macrostructural parameters, and mechanical properties after 28 days of maturing. Furthermore, the influence of CS on the hygric properties and the water resistance of the MOC-based composites were studied after 24 h-long immersion in water. It has been shown, that with the increasing amount of CS, the mechanical parameters improve quite rapidly, making CS an enhancing eco-friendly nanoadditive. It was also shown, that CS helps to slow down water transport in MOC-based composites, which is a key aspect in the improvement of their water resistance and overall durability after exposure to humidity. The incorporation of carbon spheres-based waste as a nanoadditive in MOC-based composites shows promising improvements in mechanical properties and water resistance, contributing to the development of environmentally friendly construction materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call