Abstract

In this study, low-cost and eco-friendly AC obtained from waste apricot kernel shells (ACAS) was utilized to simultaneously solve the inherited drawbacks and enhance thermal conductivity of (Capric-Myristic acid (CA-MA), Lauryl alcohol (LAOH), n-Octadecane (OD) and Polyethylene glycol (PEG)) as different type organic PCMs. The ACAS/PCM composites had high PCM loading rates of up to 75 wt%, hence a high latent heat capacity of up to 193.7 J/g. Their melting and freezing temperatures varied in the range of 20.21–26.61 °C and 18.37–28.78 °C, respectively. All the prepared composites exhibited high thermal degradation resistance as well as high cycling stability even after 1200 melting-freezing cycles. The thermal conductivity of ACAS/CA-MA, ACAS/LAOH, ACAS/OD and ACAS/PEG was measured approximately 2.61, 2.40, 2.27 and 1.75 times higher than that of pure CA-MA, LAOH, OD and PEG, respectively. The advantageous TES characteristics of leak-proof composites make them favourable PCMs for low-temperature thermal management of buildings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call