Abstract
Small interfering RNAs (siRNAs) are now established as a favourite tool to reduce gene expression by RNA interference (RNAi) in mammalian cell culture. However, limitations in potency, duration, delivery and specificity of the gene knockdown (KD) are still major obstacles that need further addressing. Recent studies have successfully improved siRNA performance by the introduction of several types of chemical modifications. Here we explore the effect of incorporating unlocked nucleic acid (UNA) into siRNA designs. The acyclic UNA monomers lack the C2'-C3'-bond of the RNA ribose ring and additively decrease nucleic acid duplex thermostability. We show that UNA-modifications of siRNAs are compatible with efficient RNAi and can improve siRNA performance both in vitro and in vivo. In particular, we find that the destabilizing properties of UNA are well suited to enhance the potency of siRNAs which are heavily modified by other chemical modifications such as locked nucleic acid (LNA), C4'hydroxymethyl-DNA (HM), 2'-O-methyl-RNA (OMe), DNA and 2'-Flouro-DNA (F). Interestingly, we find that naked, but UNA-modified siRNAs have dramatically increased biostability in mice and can induce potent KD in a xenograft model of human pancreas cancer. Hereby UNA constitutes an important type of chemical modification for future siRNA designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.