Abstract
We report the synthesis and characterization of luminescent rhenium(I) amidodipyridoquinoxaline biotin complexes [Re(CO)3(dpqa)(L)](PF6) (dpqa = 2-(n-butylamido)dipyrido[3,2-f:2',3'-h]quinoxaline; L = 4-(biotinamidomethyl)pyridine (py-4-CH2-NH-biotin) (1), 3-(N-((2-biotinamido)ethyl)amido)pyridine (py-3-CO-NH-en-NH-biotin) (2), 4-(N-((6-biotinamido)hexanoyl)aminomethyl)pyridine (py-4-CH2-NH-cap-NH-biotin) (3)), and their biotin-free counterpart [Re(CO)3(dpqa)(py)](PF6) (py = pyridine (4)). Upon irradiation, these complexes exhibited intense triplet metal-to-ligand charge-transfer (3MLCT) (dpi(Re) --> pi(dpqa)) emission in fluid solutions at 298 K and in alcohol glass at 77 K. However, the emission became much weaker in aqueous buffer, probably due to the interactions of water molecules with the amide substituent of the dpqa ligand. These properties render the complexes good candidates as luminescent probes for hydrophobic media, such as the substrate-binding sites of proteins. The avidin-binding properties of the new biotin complexes have been studied by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays, emission titrations, and competitive association and dissociation assays. Most importantly, the complexes showed a profound increase in emission intensities upon binding to avidin. Additionally, we found that the fluorescence of anthracene was quenched by these rhenium(I) complexes, and the 3MLCT emission of the complexes was also quenched by anthracene. On the basis of these findings, new homogeneous assays for biotin using these complexes, avidin, and anthracene-labeled avidin have been designed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.