Abstract

ABSTRACTThis article confirms the utilization of depolarization ratio derived by ground-based Aerosol Robotic Network (AERONET) Sun/sky radiometer data obtained during a high-PM10 episode at Gwangju, Korea (35.10° N, 126.53° E) in April 2009, in order to determine the nature and source of the atmospheric aerosol associated with this event. Integrated monitoring using satellite and depolarization light detection and ranging (lidar) data, together with model analysis, was also completed for the period of the high-PM10 event. The Sun/sky radiometer-derived particle depolarization ratio values are similar to the lidar-derived values, and these values highlight the effect of dust particles on aerosol observation. High particle depolarization ratios (12.5–14.2%) were observed when the aerosol plume transported from the west between 5 and 7 April. In contrast, lower particle depolarization ratios (5.8–9.8%) were detected when the aerosol plume was transported from the north on other observation days. Different optical properties are also shown according to the variation of depolarization ratio. High values in the real part of the refractive index (1.47–1.49 at 440 nm), lower values in the imaginary part of the refractive index (0.007–0.009 at 440 nm), and a high proportion of coarser particles were observed during the high depolarization ratio period. In contrast, the atmospheric aerosol transported from the north showed characteristics more commonly associated with smoke, with lower values in the real part of the refractive index (1.41–1.48 at 440 nm), higher values in the imaginary part of the refractive index (0.008–0.011), and a high proportion of fine particles. This indicates that the Sun/sky radiometer-derived depolarization ratio is a useful parameter when estimating the effect of dust particles during high-PM10 events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call