Abstract

Sulphur dioxide (SO2) is usually used in winemaking due to its effectiveness as an antimicrobial and antioxidant agent. However, there is growing interest in finding alternatives to SO2 because of its adverse effects on human health. Therefore, in this work, a low-SO2-producing Saccharomyces cerevisiae strain was selected and the AIR-MIXINGTM M.ITM (A.M.) system, capable of determining a high extraction of polyphenols, was used to produce a red wine without added sulphites. A tank managed with the traditional pumping-over technique was used as a comparison. Microbiological and chemical monitoring of both fermentations performed by plate counts and HPLC analyses, respectively, did not indicate significant differences as regards the yeast growth kinetics and the degradation of the sugars, while it highlighted a faster extraction kinetics of colour and total polyphenols in the fermentation carried out with the A.M. system. Both experimental wines showed a total SO2 content <10 mg/L, but in the wine produced with A.M., a higher content of the polymeric forms of anthocyanins and non-anthocyanin phenols was found in favour of a higher stability of the wine achieved in a shorter time than the control. Furthermore, a higher concentration of reduced glutathione, a compound well-known for its antioxidant activity, occurred in wine obtained with the A.M. system. In conclusion, the use of low-SO2-producing yeasts in combination with the A.M. system could be a suitable approach to produce wines without sulphites added.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.