Abstract

Capacitive techniques, routinely used for solar cell parameter extraction, probe the voltage-modulation of the depletion layer capacitance isothermally as well as under varying temperature. In addition, defect states within the semiconductor band gap respond to such stimuli. Although extensively used, capacitive methods have found difficulties when applied to elucidating bulk defect bands in photovoltaic perovskites. This is because perovskite solar cells (PSCs) actually exhibit some intriguing capacitive features hardly connected to electronic defect dynamics. The commonly reported excess capacitance observed at low frequencies is originated by outer interface mechanisms and has a direct repercussion on the evaluation of band gap defect levels. Starting by updating previous observations on Mott-Schottky analysis in PSCs, it is discussed how the thermal admittance spectroscopy and the deep level transient spectroscopy characterization techniques present spectra with overlapping or even "fake" peaks caused by the mobile ion-related, interfacial excess capacitance. These capacitive techniques, when used uncritically, may be misleading and produce wrong outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call