Abstract

The development and production of alternative fuels such as biodiesel that continues to be carried out further increases glycerol as a by-product of the biodiesel process. The accumulation that continues to occur will cause a decrease in the price of glycerol. To solve this problem, glycerol is reprocessed into its derivative products, one of which is Glycerol Mono Oleate (GMO). In this study, natural zeolite was modified using a sulfonation process. The results of catalyst characterization based on FTIR indicate that the modification in natural zeolite was successful when the catalyst had the expected functional groups. The thermodynamic parameters (ΔH, ΔS, ΔG) are determined for this reaction using the Eyring equation. The reaction fits with the pseudo-2nd order kinetic model. The activation energy of the esterification reaction using sulfonated zeolite is reported as 37.855 kJ/mol. The result shows that the best variable to produce GMO is the reaction at a temperature of 220oC with the conversion value was 95.00%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.