Abstract

Using dissociation in 0.8 M KCl, it was established that in freshly excised Jerusalem artichoke (Helianthus tuberosus L.) tuber slices less than 8% of the ribosomes were in polysomes. The first hour of aging in water was the period of most rapid polysome accumulation; over 32% of the ribosomes carried nascent polypeptide chains at the end of this time. Thereafter polysome accumulation continued to increase, but more gradually. While synthesis of high-molecular-weight RNA (presumed mRNA) was inhibited more than 95% by α-amanitin during the first hour of aging, the inhibitor had no effect on polysome formation. As determined by [(3)H]polyuridylic acid hybridization, unaged cells contained polyadenylated RNA with a size range of 6-30S. The amount of polyadenylated RNA did not change during the first hour of aging. In control cells in water the in-vivo rate of protein synthesis increased exponentially during the first 4 h of aging without a comparable increase in polysomes. In α-amanitintreated tissues a similar increase in protein synthesis was not observed despite the presence of near control levels of polysomes. It is suggested that early polysome formation depends on stored mRNA. Inhibition of mRNA synthesis by α-amanitin prevents the normal development of an enhanced rate of protein synthesis which is not directly related to numbers of ribosomes in polysomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.