Abstract

Saline and poor-quality water irrigation-induced land degradation constitutes a major threat to the agricultural productivity. Agroforestry systems prove more beneficial than conventional arable agriculture systems in areas where saline and other categories of poor-quality water are the only source of irrigation. Poor-quality water use in forestry and agroforestry plantations can provide large number of ecosystems services, such as carbon sequestration, lowering surface temperature, regulate fresh water flows, control erosion, and maintain soil fertility. Available evidences suggest that tree species such as Acacia nilotica, Eucalyptus tereticornis, and Prosopis juliflora are found highly effective in terms of growth and biomass production under saline irrigation. Various tree species and crops can be grown in different agroforestry systems, such as agri-silviculture system, silvopastoral system, agri-horti system, multipurpose woodlots, and saline aquaforestry. Biodrainage and phytoremediation techniques could be highly effective in recycling and reusing the saline and poor-quality water and reducing soil contamination due to salts and other pollutants. Even a business model can be developed to use and recycle wastewater for afforestation programs along with the production of pulpwood, fuelwood, and timber-wood. However, several constraints and challenges exist in the use of saline and poor-quality water for plantation programs and these must be addressed for obtaining the greater ecological and environmental benefits of investments. Overall, agroforestry and tree plantations seem to be ecologically and economically viable options to judiciously use saline and the poor-quality water for enhancing land productivity and protecting the soil and water resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call