Abstract

In this paper, rice husk and waste aluminum cans were exploited as silicon and aluminum sources, respectively for the low-cost synthesis of some nanosized zeolite, zeolite/zeolite, and geopolymer/zeolite products. XRD confirmed that the synthesized geopolymer/zeolite products are geopolymer/zeolite A (has a crystallite size of 58.44 nm & abbreviated as G1) and geopolymer/faujasite (has a crystallite size of 25.58 and 20.26 nm & abbreviated as G2 and G3, respectively). Also, the synthesized zeolite products are sodium aluminum silicate hydrate (has a crystallite size of 27.65 and 41.85 nm & abbreviated as H1 and H2, respectively). Besides, the synthesized zeolite/zeolite product is sodium aluminum silicate hydrate/zeolite A (has a crystallite size of 66.01 nm and abbreviated as H3). Moreover, the synthesized products were characterized using other tools such as HR-TEM, FE-SEM, EDX, and FT-IR. The synthesized products were efficiently applied for removing Co(II), Cu(II), and Zn(II) ions from aqueous media and wastewater which was taken from Abuzaabal- Qalyubiyah-Egypt. The maximum uptake capacity of G3 sample toward Co(II), Cu(II), and Zn(II) ions is 134.24 ± 1.26, 126.26 ± 0.32, and 131.93 ± 0.87 mg/g, respectively. The uptake of the studied metal ions is spontaneous, chemical, exothermic, and fitted well with the Langmuir isotherm and pseudo-2nd-order kinetic model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.