Abstract

The convertibility of paperboard in a press-forming process was studied using a novel type of tool set that allows forming of small substrates such as laboratory handsheets (i.e. experimental materials) to investigate the role of mold design on substrate-press-tool interaction. The tool set makes it possible to prepare rectangular trays in both sliding and fixed blank modes in a pilot-scale press-forming machine. The tests showed that the fixed-blank mode makes it possible to estimate the elongation of the substrate in the forming process by determining the maximum forming depth for rupture-free samples. A more detailed inspection with an optical microscope of grid-patterned materials revealed that elongation took place mostly on the rim area in addition to the tray wall, and that the outer dimensions of the blank remained practically unchanged. The behavior of the material in press forming process was evaluated in addition to the novel tool set in a bigger, production-scale mold, and results showed good agreement between the small tool set and the standard mold, in spite of the dimensional differences. The smaller size of the mold did not require a compromise in any aspect of the press-forming process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.