Abstract

The possibility of utilizing highly polarized electron spin of the photo-excited triplet state of organic semiconductors (pentacene molecules) embedded in organic crystals and mesoporous materials by zero-field (ZF) and near zero-field (NZF) pulsed electron paramagnetic resonance (EPR) techniques in a quantum computer will be explored. A simple logic gate, such as CNOT, utilizing such highly polarized electron spins communicating with the surrounding paramagnetic nuclei via hyperfine interaction will be discussed. Major advantages of these approaches are: (1) high electron spin polarization, (2) possible single-molecule detection, (3) orchestrated quantum perturbations can be imposed, and (4) pulsed ZF and NZF EPR techniques can be performed without high magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call